Finite symmetric graphs with two-arc transitive quotients II

نویسندگان

  • Zaiping Lu
  • Sanming Zhou
چکیده

Let be a finite G-symmetric graph whose vertex set admits a nontrivial G-invariant partition B. It was observed that the quotient graph B of relative to B can be (G,2)-arc transitive even if itself is not necessarily (G,2)-arc transitive. In a previous article of Iranmanesh et al., this observation motivated a study of G-symmetric graphs ( ,B) such that B is (G,2)-arc transitive and, for blocks B,C ∈ B adjacent in B, there are exactly |B| − 2 (≥1) vertices in B which have neighbors in C. In the present article we investigate the general case where B is (G,2)-arc transitive and is not multicovered by (i.e., at least one vertex in B has no neighbor in C for adjacent B,C ∈ B) by analyzing the dual D∗(B) of the 1-design Contract grant sponsor: NSF (to Z.L.); Contract grant sponsor: 973 Project (to Z.L.); Contract grant sponsor: PCSIRT (to Z.L.); Contract grant sponsor: Australian Research Council (to S.Z.); Contract grant number: DP0558677; Contract grant sponsor: University of Melbourne (to S.Z.). Journal of Graph Theory © 2007 Wiley Periodicals, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of a family of symmetric graphs with complete 2-arc-transitive quotients

In this paper we give a classification of a family of symmetric graphs with complete 2-arc transitive quotients. Of particular interest are two subfamilies of graphs which admit an arc-transitive action of a projective linear group. The graphs in these subfamilies can be defined in terms of the cross ratio of certain 4-tuples of elements of a finite projective line, and thus may be called the s...

متن کامل

Cross Ratio Graphs

A family of arc-transitive graphs is studied. The vertices of these graphs are ordered pairs of distinct points from a finite projective line, and adjacency is defined in terms of the cross ratio. A uniform description of the graphs is given, their automorphism groups are determined, the problem of isomorphism between graphs in the family is solved, some combinatorial properties are explored, a...

متن کامل

Symmetries of Graphs and Networks

Symmetric graphs of diameter 2 with complete normal quotients Carmen Amarra University of Western Australia, Australia [email protected] A graph has diameter 2 if it is not a complete graph and if every pair of nonadjacent vertices is joined by a path of length 2. Our general problem is to examine the overall structure of graphs which are both arc-transitive and of diameter 2 using norm...

متن کامل

The locally 2-arc transitive graphs admitting an almost simple group of Suzuki type

A graph Γ is said to be locally (G, 2)-arc transitive for G a subgroup of Aut(Γ) if, for any vertex α of Γ, G is transitive on the 2-arcs of Γ starting at α. In this talk, we will discuss general results involving locally (G, 2)-arc transitive graphs and recent progress toward the classification of the locally (G, 2)-arc transitive graphs, where Sz(q) ≤ G ≤ Aut(Sz(q)), q = 2 for some k ∈ N. In ...

متن کامل

A class of symmetric graphs with 2-arc transitive quotients

Let Γ be a finite X-symmetric graph with a nontrivial Xinvariant partition B on V (Γ) such that ΓB is a connected (X, 2)-arctransitive graph and Γ is not a multicover of ΓB. A characterization of (Γ,X,B) was given in [20] for the case where |Γ(C) ∩ B| = 2 for B ∈ B and C ∈ ΓB(B). This motivates us to investigate the case where |Γ(C) ∩ B| = 3, that is, Γ[B,C] is isomorphic to one of 3K2, K3,3 − ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2007